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A B S T R A C T

Discovery of numerical dependencies formalized as algebraic equations or
other symbolic laws is an important class of KDD problems. The major part
of problems solved by the machine discovery system PolyAnalyst belongs
to this class [ 1, 2] . Searching for structure hidden in data PolyAnalyst builds
and tests hypotheses about interdependencies or other regularities in data in
a form of functional programs constructed recursively from simpler programs
using 4 production methods. Two of them, ’rational expression’ and
’functional composition’, are most important for discovery of numerical
dependencies. An efficient search strategy based mainly on the rational
expression productions is discussed in this paper. Procedures built by
PolyAnalyst are treated as regression models which are nonlinear in general
case. Specific methods of solution of associated nonlinear regression
problems are described.
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1. INTRODUCTION

Problems related to discovery of numerical dependencies between real valued
variables are at least as common for science and industry as classification problems.
Until recent times the prevailing number of works in this field was devoted to either
sub-symbolic approaches like neural nets or methods based on regression models
given a priori or selected from some narrow class. Only in last decade several systems
were developed which formalize discovered dependencies as mathematical equations
of a very general form. The well known systems of this class are BACON [3],



ABACUS [4], FAHRENHEIT [5], E*[6], KEPLER [7], 49er [8]. The key factor
determining performance of these systems is a compromise between computational
complexity and variety of forms of equations which can be discovered. This
compromise is achieved due to choice of more or less narrow set of formulae in which
search is concentrated. For example, the Equation Finder, function-finding module
of 49er system [9] searches for the best formula expressing dependence of variable
y on variable x  among equations of the form ∑ai fi(x ,y) =  F(x ,y).

In the KDD system PolyAnalyst [10, 11] designed by us rational expressions
(polynoms divided by polynoms) play such a special role. In the present paper we
consider search strategy based on this choice, describe methods of solution of
nonlinear regression problems specific for this approach, and discuss its pluses and
minuses. To make the consideration clearer we begin with a very brief outline of
PolyAnalyst architecture.

2. POLYANALYST: SEARCH IN THE SPACE OF FUNCTIONAL
PROGRAMS.

PolyAnalyst analyzes data represented as a set of records consisting of one or
several fields so that all records have the same format. It can discover dependence of
some field on other fields and express it (if it exists) in explicit symbolic form. Beside
discovery of numerical dependencies this class of problems includes also classification
and problems close to grammar inference.

The kernel of the data mining system PolyAnalyst is a mechanism which builds
new functional programs from existing functional programs. Not considering
semantics of these programs they can be understood as abstract objects with some
number of inputs (or without inputs) and 1 output. Inputs (also called arguments) and
outputs are marked by their type and some other attributes. The simplest atomic
functional procedures are called primitives. The set of primitives is determined by
structure and properties of data to be analyzed. The set of primitives includes standard
and user-defined primitives. Information in databases is accessed via special data
access primitives which also can be standard and user-defined. Such an architecture
gives PolyAnalyst flexibility because the user-defined data access primitives can issue
SQL requests, read data files or support more sophisticated data access not bound to
the relational database ideology.

For building new functional programs from existing ones PolyAnalyst uses four
production schemes. The simplest scheme is functional composition. PolyAnalyst
takes one functional program (it is called producing function) and connects some its
inputs with outputs of some other existing programs. This process is controlled by the
compatibility rules which do not permit certain combinations of attributes of
connected inputs and outputs. The second scheme serves to realize such often used



concepts as ∃  and ∀  quantors, calculation of average, integration, etc. To form a new
functional program using this scheme PolyAnalyst selects some existing program
returning numerical or boolean value. The new program returns sum (or result of
boolean OR operation) of values returned by the old procedure which correspond to
all possible combinations of values of certain old procedure’s arguments. The third
scheme realizes an analogue of while  construction of the conventional programming
languages like C or PASCAL. At last the scheme most important for discovery of the
numerical laws produces functional programs realizing rational expressions (a
polynom divided by a polynom) formed from numerical constants and some existing
programs (naturally, they should return numerical values). This scheme will be
considered in details in the next section.

In fact, this mechanism realizes a simple universal programming language suitable
for formalization of wide range of laws and rules which can be discovered in data.
For example, if construction can be expressed using functional composition with the
special primitive called TF-commutator  taken as a producing function. First argument
of the TF-commutator is boolean. If it is true then result of the TF-commutator is
equal to the value of it’s second argument, else it is equal to the value of the third
argument. PolyAnalyst has the explanation generator module which translates rules
expressed in form of functional programs into a clear verbal form including standard
mathematical notation.

The generator of functional programs is controlled by the search strategy module.
The search direction is determined in accordance with evaluation of each individual
functional program carried out by the search strategy module. In case of discovery of
the numerical laws the system uses two evaluation criteria. These are the standard
error of the respective regression model and the entropy of values returned by the
functional program on the set of training examples. The search process is a
combination of full search (low priority component) and so-called ’generalizing
transformations’ - GT (high priority component). The GT process takes one of the
best found programs (called root program) and uses it for creation of new programs
with help of one of the above mentioned production schemes in all possible ways
satisfying the following condition. Every derivative program should have some set of
arguments such that when these arguments have certain constant values the derivative
program becomes identical to the root program. This condition guarantees that the
derivative programs fit the data not worse (in terms of the standard error) than the
root program. In normal situations the GT process takes the most part of PolyAnalyst
computation time. Realization of full and GT search in the space of rational
expressions is considered in the next section.

In conclusion of this section we say some words about computational complexity
of our approach. In our case exact evaluation of the computational complexity is a
complex problem because of its very strong dependence on quality of explored data.
When our algorithm is tested on random data without any interdependencies between



attributes its computation time depends on complexity of built procedures
exponentially. If there exists strong dependence between attributes the system detects
its presence since some of built procedures have high evaluation in terms of the above
mentioned criteria. In this case PolyAnalyst starts multi-level GT search and depend-
ence of computation time on procedure complexity becomes close to linear. More
detailed consideration of PolyAnalyst’s computation time for data with various
statistical characteristics would require too much place so that we here limit ourselves
by this short remark. Reasonable solution time of various real-world data analysis
problems also can be considered as an evidence of acceptable computational
complexity of PolyAnalyst’s algorithms.

3. SEARCH IN THE SPACE OF RATIONAL EXPRESSIONS.

Fisrt of all we give some reasons why rational expressions represent the special
construction of PolyAnalyst’s internal language.

1. Rational expressions form a very large set of expressions with easily under-
standable properties, convenient for automated and manual transformations. Identity
of two rational expressions can be easily detected automatically.

2. They can be evaluated quickly and exactly in comparison with, say, logarithms
or trigonometric functions.

3. Our experience shows that rational expressions describe various data very well
except cases of logarithmic and exponential dependencies in their asymptotic region
or explicit periodical dependencies. Variations of denominator near zero allows to
model fast changes of dependent variable, peaks, discontinuities and other strong
nonlinear effects.

4. Coefficients entering rational expression considered as a regression model can
be calculated much more easily and exactly than for a general nonlinear regression
model.

At last it should be noted that the choice of rational expressions as a special
production method does not forbid PolyAnalyst building functions of a more general
form. The set of functions which can be built depends also on the set of functional
primitives. For example, if we have the binary primitive pow(x,y)  = xy we can build

the expressions Axyz or AB
1
⁄( x

2+ C).
PolyAnalyst produces rational expressions which can include all existing

functional programs returning numerical values except those that are rational
expressions themselves. The order in which rational expressions are built is
determined by their complexity. The complexity of rational expression is a sum of
complexities of functional programs entering it and its own complexity which is
proportional to the number of algebraic operators in it. The full search is organized



as a breadth-first search process which runs consecutively through the subsets of
rational expressions with increasing complexity.

The main problem which has been solved on the stage of implementation of
rational expression production mechanism in PolyAnalyst was to design it in a way
that would give the minimum number of equivalent rational expressions. The
definitions of normalized form of rational expression and ordering relation on the set
of the normalized rational expressions help to achieve this goal. All normalized
rational expressions are defined by

a. the number of functional programs entering them (Ne);
b. the number of terms in the numerator (Nn);
c. the number of terms in the denominator minus 1 (Nd) (polynoms are

considered as rational expressions with Nd = 0; their denominator consists of one
term equal to 1);

d . the polynom representing the numerator (N );
e. the first term of the denominator (d0);
f. the polynom representing the rest terms of the denominator (D).
The first term d0 of the denominator is considered as having no multiplicative

coefficient. By that the scale of all the multiplicative coefficients in rational expression
is fixed. It is why d0 term is separated from other denominator’s terms. The
components a.-f . defining rational expression are enumerated in order of descending
significance relatively to the above mentioned order on the set of normalized rational
expressions. The lexicographic order is defined on the set of polynoms. It is
determined by their terms so that the first term is considered as most significant. Terms
entering the polynoms N  and D are ordered so that the first term has the highest order.
The first term of the polynom D should not have the order greater than the order of
d0. The set of terms entering the rational expression also has the lexicographic order
defined on it. The order is determined by position of the factors (functional programs)
constituting the term in the list of all functional programs entering the rational
expression. The factors constituting the terms are ordered so that the first factor has
the highest order. Although search in the set of normalized forms of rational
expressions does not  avoid all equivalencies many equivalencies such as presence of
common factor in numerator and denominator can be easily detected by the additional
analysis of the structure representing rational expression constructed.

The large class of the generalizing transformations of rational expressions can
be defined due to the following obvious fact. If A, B, P1, P2, P3 are polynoms and
the rational expression R = A/ B is taken as a root program then all rational

expressions R′  =  
A∗ P1 +  P2
A∗ P1 +  P3

 are its GT-derivatives. Indeed, when all coefficients of

polynoms P2 and P3 are equal to zero R′  becomes identically equal to R.
The GT search in the space of rational functions is organized in the following

way. The GT search is realized by several concurrent processes pi. Root of p0 process



is the best procedure found by the full search process. Root of pi process (i≥ 1) is the
best procedure found by the process pi-1 . Every pi process performs the breadth-first
search building consecutively the GT-derivatives of its root procedure in order of
increasing complexity. If the process pi finds a new best procedure it destroys all
processes pj for j>i and creates new process pi+1 with this procedure taken as a root
procedure. The last pi process in this chain creates its child process pi+1 when it finds
a GT-derivative of its root procedure whose coefficients all have the T ratio greater
than 1. The T ratio of coefficient of regression model is the ratio of its computed value
to its standard deviation.

An example of GT search combined with full search is given in section 5. This
mechanism is illustrated there by shortened PolyAnalyst search protocol for an
empirical law discovery problem from geophysics.

As it was said every built rational expression is considered as regression model.
The next section is devoted to the methods of solution of associated regression
problems.

4. SOLUTION OF REGRESSION PROBLEMS ASSOCIATED WITH
CONSTRUCTED PROCEDURES

After PolyAnalyst has built a new procedure it tries to use it to express depend-
ence of selected variable on other variables with minimum standard error varying
values of constants entering the procedure. Since PolyAnalyst searches for the best
fit function in a very wide space of procedures it must be able to solve a great variety
of nonlinear regression problems. The main difficulty of these regression problems
is caused by the fact that in general case there is no a priori information about local
and global behavior of the regression function. Implementing PolyAnalyst’s
regression algorithm we had to solve the following set of problems.

1. Not having any assumptions about global behavior of regression function we
risk to find not global minimum of standard error but some local minimum. Figurally
speaking we may slide down to some little "pit" thus missing really lowest point on
the graph of dependence of standard error on values of regression coefficients.

2. Efficient minimization algorithm cannot be realized without information about
characteristic scales of regression coefficients. For example, if some constant entering
regression function is a power degree its variation by one tenth may change the
standard error as strongly as variation of value of other constant by several thousands.
In fact, realizing our algorithm we have made an assumtion about characteristic scale
of regression coefficients. Namely, we assume that they lay in the interval 10-5 - 105.
Since PolyAnalyst normalizes explored data trying to make all of them of order 100

- 101 this assumtion seems to be reasonable in most cases.



3. Local behavior of regression function may be quite unusual. For example,
assume that explored data has a form of time sequences of values ai and regression
function is f = A * (the number of measurements i for which ai > B) + C. It is clear
that the characteristic surface of that function consists of horizontal "steps":
∂ std .err

∂B
 either equals to zero or does not exist.

4. Practical realization of algorithm solving regression problems for so wide
variety of nonlinear models on the real hardware (Intel 87 family math co-processor
in our case) faces numerous problems caused by over- and underflows, exceptions,
domain errors, roundoffs, and many other situations.

Obviuosly, the nonlinear regression problems in such a general formulation occur
in practical computing rarely. Anyway, all the algorithms known to us use more or
less strong assumptions about regression model, require hill climbing starting point
and initial step to be given or use other user-supplied information and therefore could
hardly be used in PolyAnalyst immediately.

After numerous expriments with test and real data we have selected the following
strategy. First we describe it in general and then consider its modifications taking into
account the structure of regression function as rational expression. The whole
procedure includes the following four steps.

1. Random trials in logarithmic scale. Suppose that the regression model includes
n  paramerters. Then the standard error is a function of n  variables which can be
considered as coordinates in n-dimensional space Rn. The first step is repeated for
all combinations of signs of these n  variables that gives 2n iterations. For each iteration
the respective part of Rn is parametrized by natural logarithm of the coordinates so
that the point with coordinates +1 or -1 is represented as (0,...,0). In this region
m log.rand  points are randomly selected in accordance with n-dimensional normal
distribution with center at (0,...,0) and some dispersion σ (we selected σ = 6 taking
into account the data normalization made by PolyAnalyst). For each m log.rand 2n

points value of standard error is calculated and the point plogr which gives minimum
standard error is selected.

2. Random trials in linear scale. In this step Rn space is parametrized linearly by
values of the regression coefficients. The point plogr with coordinates plogri

determined in the previous step is taken as a center of n-dimensional normal
distribution with the dispersion plogri

 corresponding to the ith coordinate. Using this

distribution m lin.rand  points are randomly selected. Again, point plinr which gives
minimum standard error r is selected among them. This point serves as a starting point
for the subsequent hill climbing procedure.

3. Determination of characteristic scales. In this step the same procedure is
repeated for each of n  variables. Its goal is to find such variation ∆ i of the ith variable
that would satisfy the following requirements



a. 1 −  sl <  
std .err(...,plinri

 +  ∆i,...) −  r

r −  std .err(...,plinri
 −  ∆i,...)

 <  1 +  sl  and

b. 






std .err(...,plinri
 +  ∆i,...) −  r

r





  >  ss or 







std .err(...,plinri
 −  ∆i,...) −  r

r





  >  ss .

These requirements mean that ∆ i correspond to linear and in the same time significant
variations of standard error. Exact understanding of the words "linear" and
"significant" is determined by values of sl and ss. Usually we set sl = 0.03, ss = 0.01.
lg( ∆ i) are determined by the bisection algorithm starting with the range [-6,5]. If for
some variables the values of ∆ i satisfying the requirements above do not exist the
values of these variables plinri

 are fixed and not changed while the desired values of

the rest variables are determined with help of the gradient hill climbing process (step
4).

4. Gradient hill climbing. Having ∆ i we can compute gradient of standard error
and start the gradient hill climbing algorithm for minimization of the standard error.
We use the following version of this algorithm. Standard error is minimized on the
line going through the starting point in the direction grad(std.err) using a fast second
order method. In the point of the standard error minimum on this line grad(std.err)
is again calculated and minimum of standard error on the new search line is sought.
This process is terminated when two sequential iterations give the relative decrease
of standard error less than 1%.

Tests show that this procedure works stable on various nonlinear regression
models and has satisfactory timing characteristics. However if it is known that the
regression function is rational then knowledge of its structure as rational expression
can make the search many times faster. This knowledge gives the following three
benefits:

- Dependence of regression function on coefficients of the polynom in the
numerator of rational expression is linear. Therefore, these coefficients can be
determined directly for any known values of the rest coefficients by the least squares
method. Thus, dimension n  of space in which the hill climbing is carried out is
decreased by the number of terms in the numerator. Clearly it leads to significant
decrease of computation time because computational complexity of step 1 depends on
n  exponentially, complexity of steps 3 and 4 - linearly.

- During steps 3 and 4 regression function is often calculated for the same values
of some coefficients. Knowledge of structure of the rational expression allows to
recalculate only those parts which depend on coefficients changed.

- When the GT search is performed in set of rational expressions as it was
described in section 3 steps 1 and 2 can be bypassed. In this case the starting point
for the hill climbing corresponds to the set of values of the coefficients which make



the GT derivative rational expression identical to its root procedure. It is reasonable
because as a rule the corrections made by the generalizing transformations do not
change the coordinates of minimum of standard error significantly.

Implementation of the regression algorithm using all the advantages given by
representation of regression function as rational expression has made PolyAnalyst
several times faster because the part of rational expressions among all procedures built
by PolyAnalyst often exceeds 90%.

5. EXAMPLE OF POLYANALYST SEARCH TRACE PROTOCOL.

In order to illustrate operation of PolyAnalyst search strategy module we
conclude the present paper by an example related to a real problem solved by
PolyAnalyst. The data to be analyzed represent 7215 measurements of logarithm of
electron density log(d e)  in ionosphere at various altitudes. Each measurement is
accompanied by values of 7 parameters characterizing meteorological and geophysical
situation at the moment of measurement. Thus, the problem is to find the empirical
law which expresses dependence of log(d e)   on these 8 independent variables
(altitude together with 7 other parameters). The independent variables will be
denoted as x0 - x7.

In process of search PolyAnalyst built many empirical dependencies some of
which are shown on Fig.1. Since the present paper is devoted mainly to discovery of
empirical laws in a form of rational expressions only the search trace in space of
rational expressions is shown (for example, the search path to the if-constuction
entering the expression D1 is omitted). The leftmost column contains laws found by
the full search process. They are shown as a sequence of formulae with increasing
complexity linked by vertical arrows. It can be seen that two of them, the first and the
last, were taken as starting points for the first level GT search. Three GT-descendants
of the procedure A are shown in the second column. The vertical arrows show the
order they were constructed by the GT search process. The procedure A3 itself was
selected as a root for the second level GT search. The procedure D1 corresonds to
the best found empirical law for log(d e)  . The laws on the Fig.1 are marked by their
standard errors (in percents) and time when they were built. It is seen that thanks to
GT search mechanism PolyAnalyst can build and test quite complex laws in
reasonable time (the computation was carried out on a Pentium-90 machine).

6. CONCLUSION.

Designing PolyAnayst we aimed to provide it with the following two key features.
First, its internal language should have expressive power of universal programming



language to be able to express all possible forms of discovered dependencies and
rules. Second, it should have convenient and flexible mechanisms allowing to
concentrate search in some classes of empirical laws which could be selected easily.
Applying PolyAnalyst to real problems we found that explored data are often
modelled well by rational expressions and therefore in many cases rational
expressions can be naturally chosen as a subset including most part of procedures
built by PolyAnalyst. Significant decrease of computation time gained from taking
into account structure of rational expressions makes us believe that search in the set
of rational expressions may give the best ratio <expressive power>/< computation
time > for many problems.

Fig.1 Several empirical laws found by the full and GT search mechasims.
Expression if(a, b, c) equals to b if condition a is true; else it equals to c.
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