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A B S T R A C T 

 
The data analysis techniques of the PolyAnalyst data mining system [Kiselev 94] are based 
on an automated synthesis of the functional programs treated as multi-dimensional non-
linear regression models. This approach provides the system with two valuable properties: 
1) it can discover hidden in the data relations that might be of a great variety of forms, 2) it 
can explore arbitrarily complexly structured data when the corresponding data access 
primitives are provided. The paper contains a description of the final version of the basic 
PolyAnalyst mechanisms, which are utilized in the general case, as well as in a particular 
case of data organized as a set of attribute values (SAV), which is the most common format 
for the data explored by KDD methods. Numerous practical results obtained by the users of 
PolyAnalyst in various fields corroborate the high efficiency of the discussed approach to 
an automated discovery of numerical dependencies in the SAV-structured data. 
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1. Introduction. 
 

A great variety of methods proposed for an automated discovery of numerical relations in 
data can be ordered according to the generality of the functional relations found or alternatively - 
according to their computational complexity. On the one pole are the fast algorithms capable of 
discovering relations of very narrow classes. Linear regression and decision trees would be good 
examples of such algorithms. On the opposite pole are the methods based on an extensive search 
in broad sets of all possible relations. The latter methods are able to discover and formalize 
complex non-linear dependencies, but the price to pay for their generality is a very long 
computational time. As examples of the systems of this kind one can mention FAHRENHEIT 
[Zytkow, Zhu, 1991], ARE  



[Shen, 1990], or 49er [Zembowicz, Zytkow, 92]. These systems construct more involved 
formulae that express the relations in data by combining simpler formulae using a functional 
composition mechanism, and eventually finding a sufficiently accurate form for the relation. If 
one performs a full search in the space of all possible formulae, then the  number of tested 
algorithms grows super-exponentially with the complexity of the built algorithms. In order to 
reduce this dramatic growth rate and arrive at an acceptable computational time in such an 
approach one needs to develop a better mechanism for the navigation in the space of all possible 
algorithms. A combination of advanced navigation mechanisms had been implemented in the 
PolyAnalyst data mining system [Kiselev 94; Kiselev, Arseniev 96; Kiselev, Ananyan, Arseniev 
97] described in this paper. 

At present PolyAnalyst occupies probably the most extreme position in the family of data 
mining systems performing a full search in the broad space of all possible relations. The main 
module of PolyAnalyst automatically formulates and tests hypotheses about the sought relation in 
the form of programs expressed in a simple internal functional language (henceforth this main 
module of the system will be referred to as simply PolyAnalyst). The internal programming 
language has a sufficient expressive power for formalizing any relation which can be expressed 
in an algorithmic form, when a set of necessary functional primitives is provided.  

Since the search for the best regression model in a set of functional programs is a very 
difficult problem, the logical structure of the PolyAnalyst system is quite complex. The system 
includes several components working cooperatively as a single structure (Fig. 1), which are 

 
Fig. 1 PolyAnalyst logical structure. 



described in detail in the present paper. PolyAnalyst implements a very general mechanism for 
generating and testing the regression models. For example, this mechanism can work with data 
that have an arbitrary structure because programs generated by PolyAnalyst access the explored 
data via special data access primitives, which can provide an access to the specific elements of 
vectors, matrices, lists, and other arbitrarily complex data structures. At the same time, in the 
case when the database records are represented as sets of scalar values, some of the PolyAnalyst 
algorithms can be implemented much simpler. An exact definition of this data format and the 
corresponding modification of the PolyAnalyst techniques specialized for the exploration of data 
represented as sets of scalar values, are the subject of the last section of the paper. 
 
 
2. PolyAnalyst internal programming language. 
 

We start the description by considering the PolyAnalyst internal programming language, 
which is used for formulating hypotheses about the relations in data. This language is a 
functional programming language in the sense defined in [Backus 1978]. Similar to any other 
programming language, the PolyAnalyst internal language includes three principal components: 
data types, functional primitives, and control structures, which can also be considered as the 
methods for constructing more complex programs from the simpler programs. 

The data types of the PolyAnalyst internal language form two classes: universal data 
types, which are defined for all application domains, and user-defined domain-specific data 
types. The former class includes only two data types, namely, boolean, denoted as L, and 
numerical (real number), denoted as N. The N type is the only data type containing an infinite 
number of values. All other data types, including L and all user-defined types, involve finite sets 
of values. To clarify the term “user-defined data types” it is necessary to explain our 
understanding of the concept of structure of the explored data. We consider the records of the 
analyzed database as sets of mappings from some sets to other sets. For example, the data 
represented as a two-dimensional matrix of numerical values can be considered as a mapping 
from the direct product of the sets of the vertical and horizontal positions to N: 
PosX PosY× → N . Generally speaking, any data structure can be thought of as a mapping 
from some sets of keys determining the access to individual values, to the sets of these values, so 
that such an approach does not limit our ability to work with arbitrarily complexly organized 
data.  

In our formalism the properties of every data type are determined by two characteristics. 
The first characteristic describes the ordering properties, namely, whether the relation “greater 
than” or the operator “next” are defined for the data of this type. The second characteristic is 
called enumerability. It determines whether the instruction "For each value from the data type X 
perform the following actions …" makes sense for the considered data type. 

The functional primitives of the PolyAnalyst internal language are at the same time the 
simplest programs of this language, so that prior to describing them it is necessary to explain how 
the programs synthesized by the system are represented. A program P is considered as an object 
having a certain set (possibly empty) of inputs in(P) and one output. Every input α ∈  in(P) is 
marked by its data type DT(α) and also by some other attributes discussed below. The data type 
of a program output is denoted as DT(P). Every input α of the program can be assigned some 
value p(α) in accordance with its data type. A set of all possible mappings from the set of inputs 



in(P) to the set of their values will be denoted as EVIN(P). For every p ∈  EVIN(P) the value 
P(p) returned by a program can be computed as a result of the sequence of operations determined 
by an internal structure of the program. These operations depend on a set of functional primitives 
entering the program and the control structures utilized. If a program contains the so called data 
access primitives (see below) then a database record for which the program is evaluated should 
be specified. In that case the output value of the program depends on the database record number 
i explicitly: P(p, i). 

The functional primitives which can be included in the programs created by PolyAnalyst, 
are also broken into two classes: universal and user-defined primitives. The first class includes 
various operations defined on the universal data types L and N. These are the boolean operations 
AND, OR, and NOT, which are represented as primitives with two (AND, OR) or one (NOT) 
inputs of the type L and an output of the type L. As a generalization of the numerical relational 
operators a ternary primitive inr with the prototype inr:L(x:N, y:N, z:N) is used. The value of this 
primitive is the value of the proposition y ≤ x < y + z. In addition to these primitives the 
universal primitives include a so called TF-commutator if:N(b:L, x:N, y:N). If b = 1 then the 
value of this primitive is x otherwise it is y. The mission of this primitive is similar to the mission 
of the if construction of the C programming language. The user-defined primitives are divided to 
primitives generated automatically for defined data types, data access primitives, and special 
primitives. For example, for each data type T a primitive expressing the equality relation with the 
prototype L(T, T) and a TF-commutator with the prototype T(L, T, T) are created automatically. 
The primitives implementing the "greater than" relation and the "next" operation are produced if 
the respective data types are described as ordered. The prototypes and the bodies of the data 
access primitives are determined by the structure of the analyzed database records. For example, 
if the records are organized as two-dimensional matrices containing the values of the type D, then 
PolyAnalyst creates a primitive with the prototype D(PosX, PosY) where PosX and PosY are the 
data types representing the horizontal and vertical positions in the matrix. Thus, PolyAnalyst has 
no internal limitations on the structure of the explored database records if the necessary data 
access primitives are supplied. The data can be organized as sets of scalar values, vectors, 
matrices, lists, or any other structures. And finally, a subgroup of special primitives includes the 
primitives corresponding to operations specific for an explored application domain. For example, 
a calculation of the sine function might be required only in a narrow class of application 
domains. Therefore a primitive implementing the calculation of sine should be defined explicitly 
by its body and prototype when necessary. 

As it has been mentioned before, functional primitives are considered as the simplest 
programs. In order to create more complex programs from the simpler programs, several 
production methods (or control structures) are used. The PolyAnalyst internal language has two 
basic types of the production methods: functional composition and iteration/recursion.  

1. Functional composition. This is a simple and clear way of creating new programs 
from existing ones. Connecting the outputs of some programs P1, ..., Pn to the inputs of a 
program Q we build a new program Q(..., P1, ..., Pn,...). It is required that data types of the 
corresponding inputs and output match. A formal definition of this production method can be 
found in Appendix. 

2. Iteration/recursion. In contrast with a simple and clear functional composition, the 
production method dedicated to creating iterative and recursive constructions is very complex. It 
realizes computational structures suitable for expressing a great variety of unconditional and 



conditional loops, as well as more specific concepts such as ∀  and ∃ quantors. Let us enumerate 
the structural components which may enter this constructions and list their purposes. 
a. Loop variables Ω. These are internal objects of an iteration/recursion construction which are 
connected to the inputs of sub-programs which are parts of the construction. They have definite 
data types (which should be discrete) and get different values from their data types during the 
process of evaluation of a considered construction. They are used for the implementation of the 
calculations that should be performed for each element of some set. 
b. The procedure PRED realizing a predicate used for the definition of the loop variable value  
 

 
 
combination subset for which iterative computations are performed. 
c. The procedure ORD defining an order on the set of values of loop variables. A sequence in 
which values are assigned to loop variables in the process of computation is determined by this 
order. 
d. The procedure COND realizing a termination condition for iterative computations (for 
conditional loops only). 
e. Procedures Πact representing the body of an iterative construction. During one iteration these 
procedures are executed. If the termination condition is not satisfied, the values returned by these 
procedures are passed to some of their inputs and a next iteration starts. Beside that a value out 
returned by some of these procedures becomes an output value of the whole iterative construction 
after the computation termination. 
Schematically this construction is depicted in Fig. 2. Some comments to this figure along with a 
formal definition of this production method also can be found in Appendix. 

Although the two discussed production methods are sufficient for providing the 
PolyAnalyst internal language with an expressive power of a universal programming language, 
an important special case of the functional composition was selected as a third production 
method. This mechanism is used for representing numerical dependencies. It is based on the 

 
Fig. 2 Iteration/recursion production method. 



inclusion of the programs returning numerical values in the form of rational expressions (i.e. 
polynomial divided by polynomial). The reasons for singling out this special form of numerical 
relations, as well as the details of the implementation of this production method are described in 
[Kiselev, Arseniev 96] to which we refer an interested reader. 
 
 
3. Prevention of building trivial and equivalent programs. 
 
Applying the production methods to existing programs we obtain new programs. However, one 
cannot guarantee that the new programs will be “good” programs from the semantic point of 
view. The synthesized programs should satisfy the following three requirements to be considered 
as semantically correct: 
1. Dependence on all inputs. We say that procedure P depends on its i-th input if P(x1,..., xi1,..., 
xn) ≠ P(x1,..., xi2,..., xn) for some combination of its input values. A semantically correct 
procedure should depend on all its inputs. This requirement can be expressed rigorously as: 
∀ ∈ ∃ ∈ ≠ ∧ ∀ ∈ =α β α β βin in( ) , ( ): ( ) ( ) ( )\{ }: ( ) ( )P P P P Pp q EVIN p q p q . Naturally this is 
applicable if in(P) ≠ ∅ . 
2. Dependence on a database record. This requirement is applicable to the programs containing 
data access primitives. It is required that such programs return different values for some pair of 
database records under the same set of input values: ∃ ∈ ∃ ∃ ≠p EVIN i j p i p j( ) : ( ,) ( , )P P P . 
3. Inequivalence to existing programs. If a program performs exactly the same computation as 
some existing program it should be discarded. Mathematical representation of this requirement is 
rather complicated: 
For all existing programs Q for which there exists an isomorphism f f

: ( ) ( )in inP Q →  such 
that DT(f(α)) = DT(α) and for all such isomorphisms: ∃ ∈ ≠p EVIN p f p( ): ( ) ( [ ])P P Q , where 

f[p] is defined by the equality f p p f
def

[ ]( ) ( ( ))α α= −1 . 
In order to sift out the programs not obeying these conditions the following mechanisms are 
utilized: 

a. Inputs and outputs of the programs are marked by additional flags called “consistency 
types” so that inputs and outputs of certain combinations of consistency types cannot be 
connected in the process of creating new programs. For example, the equivalence NOT(a<b) ! 
a=b ∨  a>b is eliminated by declaring the input of the NOT primitive and the output of the 
LESS_THAN primitive as inconsistent. 

b. The symmetry properties of the program inputs are considered. Only one representative 
of symmetrically equivalent productions is selected. For example, OR(P(...), ...) is retained, while 
OR(...,P(...)) is rejected. 

c. Similarly, the requirement that some inputs cannot be connected to the same output is 
taken into account. This helps in avoiding the equivalencies like OR(P(...), P(...)) ! P(...). 

d. For the commutative productions a certain fixed order of their application is selected. 
This measure eliminates the equivalencies of the kind: P(NOT(x), y, z, w) = IF(Q(x, y), z, w), 
where P(x, y, z, w) = IF(OR(x, y), z, w), Q(x, y) = OR(NOT(x), y). 



e. Direct tests are applied to check whether the requirements 1 and 2 hold. These tests are 
based on a comparison of the values returned by the built programs under a variation of the 
values assigned to their inputs. 

f. For each constructed program PolyAnalyst calculates a special value called an input-
output signature, which depends on the values of its inputs and the respective returned values. 
The procedure of calculating this signature guarantees that the programs equivalent in the sense 
defined in requirement 3 have the same signature values. The procedures with equal signatures 
are tested for satisfying the requirement 3.  
 
 
4. Evaluation of the constructed programs. 
 

As had been mentioned before, the created programs are considered as solutions to a 
certain problem. For example, when solving the problem of the discovery of a numerical relation, 
the programs constructed by PolyAnalyst are treated as regression functions and are evaluated in 
terms of standard error of the respective regression models. Alternatively, when solving a 
classification task, PolyAnalyst evaluates the constructed algorithms to achieve the minimal 
number of incorrect classifications.  Depending on the problem solved, the module performing 
the evaluation of programs can implement an arbitrary functional Ev[P], which should be 
minimized. This feature provides the system with a great flexibility: the ability to solve a wide 
class of KDD and optimization problems. 

Strictly speaking, not every program is considered as a potential solution: the programs, 
which involve no data access primitives, and even some classes of programs including such 
primitives serve only as components for other programs. It should be noted that each program P 
represents in general a set of mappings from a set of database records to DT(P), parametrized by 
the values of its inputs. Therefore for an individual program P the problem of finding the best 
values for its inputs must be solved. Depending on the structure of the functional Ev[P] and the 
form of the program P, methods of combinatorics, numerical optimization, or other approaches 
may be used to solve this problem. 
 
 
5. GT-search. 
 

The last but not least part of the PolyAnalyst system is a module that selects the 
production methods, and components for building new programs. The generation of new 
programs is performed by two processes. The first process, with a lower priority, implements the 
full search in the space of programs in the order of increasing complexity (which approximately 
equals to the number of primitives constituting the program). Assigning this process a lower 
priority ensures that the slow full search process runs in the background of the other quick 
process efficiently developing a few currently most promising branches of the search tree. This 
other process, which has a higher priority, creates new programs using the so-called generalizing 
transformations (GT) [Kiselev, Arseniev 96].  

The application of a GT to an existing program yields a new program called a GT-
derivative. A GT-derivative of a program P has the same inputs as the original program, plus 
some additional inputs so that for some values assigned to these additional inputs the GT-



derivative becomes identically equal to P. One can say that GT-derivatives have additional 
degrees of freedom in comparison with the program P and thus they can be called its 
generalizations. In terms of the formalism introduced in section 2 the program ′P  is called a GT-

derivative of the program P (that is denoted as P Pφ
GT

′ ) iff: 
1. There exists an isomorphism f I

f
: ( ) ( )in inP P → ⊂ ′  such that DT(f(α)) = DT(α); 

2. There exists an isomorphism F EVIN E EVIN
F

: ( ) ( )P P → ⊂ ′  such that q = F(p) => 
q(f(α)) = p(α) and ∀ ∈ ′ ∀ ∈ = ∧ ∀ ∈ ′ = −α α αin( )\ , : ( ) ( ) : ( ) ( ( ))P P PI p q E p q p E p F p1 . 
For any program there exists a large number of classes of transformations of the program 
structure, which lead to the creation of a GT-derivative of this program. One should note that the 
GT are applied only to the most promising branches of the seat tree, thus facilitating a dramatic 
reduction of the computational time. The success of the utilization of the GT-search for 
navigating in the space of programs is based on an obvious fact that being a generalization of the 
program P, the program ′P  cannot be worse than the program P in terms of the criterion 

mentioned in the previous section: P P P [P]φ
GT

′ ⇒ ′ ≤Ev Ev[ ] . Indeed, since there always exists 
such a combination of the values of inputs from in( )\′P I, which makes ′P  identical to P, thus 
the value of the Ev functional for the former program is at least not greater than the value of Ev 
for the latter program. Furthermore, if in( )\′P I includes an input of the type N and a partial 
derivative of Ev[ ]′P  with respect to that input is different from zero, then we can always 
decrease the value of Ev[ ]′P  by slightly changing the value of this input in the respective 
direction. This property makes it possible to organize a GT-based search in the space of programs 
in the following way. When the process of the full search finds a program for which Ev[P] is 
sufficiently small, this program becomes a parent for a generation of programs created from this 
program with the help of GT. If one of these programs demonstrates a significant decrease in Ev, 
this program in turn is taken as a starting point for building new programs with the help of GT 
and so on. By utilizing this approach the system can build rather complex programs over a 
reasonable period of time.  

This description of the GT-search concludes the discussion of the internal PolyAnalyst 
mechanisms employed in a general case. The next section is devoted to discussing a special case 
when the data has a “set of attribute values” (SAV) structure. 
 
 
6. Specialization of PolyAnalyst mechanisms for the case of data represented as a set of 
attribute values (SAV). 
 

First of all, let us furnish a precise definition of the SAV data format. From the point of 
view of PolyAnalyst a data format is defined completely by specifying the data access primitives, 
a set of possible data types, and a set of the user-defined primitives. The term “set of attribute 
values” implies that each considered database record constitutes a set of scalar values of different 
types. Therefore for every position of the data record a data access primitive with no inputs is 
generated. The data type of the output of this primitive matches the data type of the attribute 
value in the respective position. Also an additional data type is introduced for every position of 
the record, which contains unordered non-numerical values. Beside the access primitives, the 



only class of the user-defined primitives which can be introduced for a domain of that kind is the 
class of equality primitives for additional data types. It can be easily shown that this set of data 
types and functional primitives leaves very few possibilities for employing the iteration/recursion 
production method for building new programs. For this reason, and also because the functional 
composition method is much easier to implement, it is reasonable to use in the SAV application 
domains only the functional composition method. Furthermore, in this case the majority of 
programs are generated utilizing an important subclass of the functional composition method, 
namely the production of rational expressions.  

Beside the internal language, the other component of the PolyAnalyst system, which is 
influenced greatly by the assumption of the SAV data organization, is the GT-search mechanism. 
Since in this case the rational production method plays a very important role, the following two 
kinds of generalizing transformations applicable to rationals are used most often: 

1. Let us denote the rational expression subjected to GT as P = A/B where A and B are 
polynomials including some programs with outputs of numerical type. If Q is a program 
returning a numerical value, while C and D are polynomials, then as it can be readily seen, the 

program R
Q
Q=

∗ +
∗ +
A C

B D
 is a GT-derivative of P. Indeed, if a program can be represented as a 

polynomial depending on programs of type N, then the coefficients of this polynomial are treated 
as inputs of the program. Making all the coefficients of C and D equal to zero we obtain an 
obvious identity R = P. 

2. If we multiply any term in A or B by a construction IF(Q, a, b), where Q is a program 
returning a boolean value, while a and b are inputs of the type N, then the new rational 
expression will be a GT-derivative of P. This is true because if a = b = 1 then IF(Q, a, b) ≡ 1. 

It should be noted that the basic commercially available version of PolyAnalyst utilizes 
only these two classes of GT.  
 
 
7. Conclusion 
 

A solid history of successful utilization of PolyAnalyst in various fields including 
banking, marketing, manufacturing, and many other fields corroborates the efficiency of applying 
the automated program synthesis techniques to KDD problems. The universality of the described 
approach is achieved due to the absence of any inherent limitations on the structure of the 
analyzed data, as well as on the procedure used for evaluating the built programs in accordance 
with arbitrary criteria implemented in the PolyAnalyst program evaluation module. The GT 
search and the mechanisms suppressing the generation of trivial and equivalent programs solve, 
or at least soften the problem of combinatorial growth of the number of the generated programs. 
The assumption of the SAV data structure allows one to make important simplifications, which 
increase the performance of the system even further.  
 
 
References 
 
Backus, J. (1978) Can programming be liberated from the von Neumann style? Commun. ACM, 
v.21, pp 613-541. 



 
Kiselev, M.V. (1994) PolyAnalyst - a machine discovery system inferring functional programs, 
In: Proceedings of AAAI Workshop on Knowledge Discovery in Databases'94, Seattle, pp. 237-
249. 
 
Kiselev, M.V., Arseniev, S.B. (1996) Discovery of numerical dependencies in form of rational 
expressions, in; Proceedings of ISMIS'96 (Ninth International Symposium on Methodologies for 
Intelligent Systems) poster session, Zakopane, Poland, pp. 134-145. 
 
Kiselev, M.V., Ananyan, S. M., and Arseniev, S. B. (1997) Regression-Based Classification 
Methods and Their Comparison with Decision Tree Algorithms, In: Proceedings of 1st European 
Symposium on Principles of Data Mining and Knowledge Discovery, Trondheim, Norway, 
Springer, pp 134-144. 
 
Shen Wei-Min (1990) Functional Transformations in AI Discovery Systems, Artif.Intell., v.41, 
pp 257-272. 
 
Zembowicz, R., Zytkow, J. M. (1992) Discovery of Equations: Experimental Evaluation of 
Convergence, In: Proceedings of AAAI-92, AAAI Press, Menlo Park, CA, pp 70-75. 
 
Zytkow J.M., Zhu J. (1991) Application of Empirical Discovery in Knowledge Acquisition, In: 
Proceedings of Machine Learning - EWSL-91, pp 101-117. 
 
 
Appendix . Formal definition of production methods of PolyAnalyst internal language 
 
1. Functional composition. A program created using the functional composition is defined by 
the quadruplet PFC = <Pup, Πdown, A ⊂  in(Pup), m m:A  → Π down >, where Πdown is a set of 
programs (it must be non-empty) and DT(m(α)) = DT(α). A new program PFC has the following 
syntactic characteristics: DT(PFC) = DT(Pup), in(PFC) = in( )P

P down

∪
∈Π
Υ in(Pup)\A. The semantics 

of this construction is the following. To determine the value of PFC for given input values the 
values returned by the programs comprising Πdown are calculated. Then every input α of Pup, 
which belongs to A, is assigned the value of m(α) and Pup is evaluated. Its output value becomes 
the output value of PFC. 
2. Iteration/recursion. The most general form of this construction is expressed by the following 
twelve components: Piter = <Ppred, Pord, Pcond, Πact, Ω, Apred ⊂  in(Ppred), Aord ⊂  in(Pord), Aiter ⊂  
in(Pcond) ∪

∈
in( )P

P actΠ
Υ , m

m

pred pred
pred:A  → Ω , m m

ord ord
ord:A  → Ω , 

m m
iter iter act

iter:A  → ∪Ω Π , out ∈  Ω Π∪ act >, where Pxxx are programs, Πact is a set of 
programs, and Ω is a set of loop variables. From the syntactic point of view, the loop variables 
are the objects which have a single attribute - their data type (this type should be enumerable). 



The iterative/recursive construction is syntactically correct if the following additional conditions 
hold: DT(Ppred) = DT(Pcond) = L, DT(Pord) = N, DT(mxxx(α)) = DT(α) for all mxxx. A special 
pseudo-program without inputs denoted as ℑ  may be substituted in place of some components of 
the considered construction. The output value of this pseudo-program always equals to 1. For 
example, if Ω = ∅ , then Ppred and Pord should be ℑ.  The prototype of Piter is defined as DT(Piter) 
= DT(out), in(Piter) = in( )P

P act

∪
∈Π
Υ (in(Ppred)\Apred) ∪  (in(Pord)\Aord) ∪  (in(Pcond)\Aiter). The 

semantics of this construction is determined by the following algorithm for its evaluation. (Note 
that the mappings mxxx describe the method of passing the values to the inputs of programs 
included in the construction.) 
1. If Ω ≠ ∅,  create a list LOOPVAR of all combinations of the possible loop variable values for 
which the value of Ppred equals to 1. The method of passing the values of the loop variables to 
the inputs of Ppred is determined by the mapping mpred.  
2. If Ω ≠ ∅,  sort the list LOOPVAR in the order of ascending values returned by Pord for the 
combinations of the loop variable values from LOOPVAR. The LOOPVAR list can be 
considered as a matrix LV[i,ω], where i is the variable value combination number, and ω is the 
loop variable. 
3. i ← 1. 
4. Calculate the values of all the programs from the set Πact. The values of their inputs are 
determined by the following rule. If miter(α) ∈  Ω, then the value of the input α equals to 
LV[1,miter(α)], otherwise it is equal to the value of the respective input of Piter. 
5. Evaluate Pcond. 
6. If Ω ≠ ∅  and i = <number of rows of LV>, or the value of Pcond equals to 0, stop the 
computation. Take the value of out as the value of the whole construction Piter. 
7. i ← i + 1. 
8. Calculate the values of all programs from the set Πact. The values of their inputs are taken 
from the loop variables, the outputs of the programs that belong to Πact, or from the inputs of 
Piter in accordance with the mapping miter. For example, if miter(α) = ω ∈  Ω, then LV[i,ω] should 
be taken as the value of α. 
9. Go to step 5. 
Passing the values between the components of this production is depicted schematically in Fig. 2. 
In addition to the described general form, the iteration/recursion production method has several 
special forms which are not considered here. 


